2022-01-21
目前,各种电储能技术大体可分为以下3类:物理储能(如抽水蓄能、压缩空气储能、飞轮储能等),电化学储能(如锂离子电池、铅炭电池、钠硫电池、全钒液流电池等)和电磁储能(如超导电磁储能、超级电容器等)。
今天简单介绍基于非物理储能的电储能技术。
(1)电化学储能
目前的电力系统中已大量采用用各种技术成熟的可充放电电池系统作为电化学储能体系,目前常用储能电池技术体系主要包括四大类:锂离子电池、铅炭电池、液流电池、钠硫电池。
其中,锂离子电池和铅蓄电池因为产业化基础好,具有明显的成本优势,因此仍是目前电化学储能市场的首选。根据相关统计,国内电化学储能项目应用集中在用户侧,随着风力发电、光伏发电的爆发式增长,引入电池储能系统有利于提升风电、光伏利用率,增大收益。由于风力、光伏发电的高峰期与用户用电的高峰期在时间上是错开的,因此引入储能系统,可明显提升用户收益;分布式燃气发电系统同样可以引入电池作为储电装置,削峰填谷,改善系统稳定性;增加备用,增加系统抗干扰力;功率支撑,改善系统供能稳定性。从系统发电侧到用户用电侧,电池系统可以平滑负荷,减小对备用容量的需求,提高收益;实现不同发电方式之间的耦合;系统故障时,可帮助重启系统,恢复正常运行;改善功率分布,保证用户的供电质量;作为应急和备用,解决短时间的供电短缺;即插即用,及时进行能量补充。
(2)电磁储能
2.1超导电磁技术
超导电磁储能原理是工作时把能量存储在流过超导线圈的直流电流产生的磁场中,其特点是效率高(>97%)、响应快(ms级)、无污染等,在超导状态下线圈的电阻可以不计,因此能耗非常小,可以用来进行长期无损耗的储能。但是超导线圈需要在温度极低的液体中工作,因此成本太高,同时也会增加系统的复杂性。目前在电力系统中的应用主要用于提高系统的暂态稳定性,改善电能质量和风电、光电等随机性强的间歇式新能源并网特性。
2.2超级电容器
超级电容器的原理是依据双电层原理直接存储电能,介于常规电容器和电池之间,其充放电可逆性非常好,优于电池,可进行数十万次的反复充放电循环。针对超级电容器响应快、循环寿命长的特点,和电池能量密度高、循环寿命短的特点,将二者结合形成混合储能系统,取长补短。在风电、光伏发电系统中,一般使用超级电容器优先充放电,同时充当“功率缓冲器”,平抑尖峰及往复性风电功率波动,延长蓄电池的使用寿命;能量密度大的蓄电池,作为系统中的主要能量来源,用于平抑风电功率的长期稳态波动,调节超级电容器荷电状态,从而快速响应风电功率的下次波动。这样的混合搭配既避免了单独采用蓄电池储能造成的功率超额配置,又避免单独采用超级电容器储能所引起的成本增加,有效降低了储能系统的投资成本。
藻类系统“变身”可再生生物光伏电池英国研究人员使用一种广泛存在的蓝绿藻为微处理器持续供电了一年,过程中只使用环境光和水。该系统具有以可靠和可再生方式为小型设备供电的潜力。该研究近日发表在《能源与环境科学》杂志上。该系统的大小与AA电池相当,包含一种称
磷酸铁锂电池的生产制造工艺与其他锂电池生产工艺流程图相似。锂电池的生产工艺有两种。因此,磷酸铁锂电池的生产工艺流程图有两种,分别是卷绕式工艺和叠片式工艺。除了电极片的堆叠步骤不同外,这两种工艺基本相同。叠片式工艺的优点是:(1) 电池芯的形状和样式是
随着电池发展的深入,挂卡锂电池的优势越来越大,应用范围越来越广。以下是挂卡锂电池的八大优势:1、绿色环保:在制造、使用甚至报废过程中不产生铅、汞、镉等有毒重金属。2、无记忆效应:可随时充电和放电,不像镍氢和镍锡电池要等到电量耗尽。3、对环境温差变化的
磷酸铁锂电池具有循环寿命长、安全性高、高温性能好、价格低、低温性能和放电可达钴酸锂水平等特点,使其成为有前途的动力电池,在未来5年主要替代镍镉电池,在未来10年,它将成为铅酸电池的有力竞争对手,未来20年可能取代铅酸电池成为主要的启动电源、UPS电
目前,三元电池基本上是三元锂电池,也可以制造成18650电池。实际上,目前的18650电池基本上是锂离子电池。那么三元锂电池好吗?下面从三元电池材料、电压、能量密度等方面阐述其性能特点。用于制造三元锂电池的材料三元材料是指镍钴锰酸锂Li(NiCoMn
聚合物锂电池是为电子设备提供动力的能源,可充电且容量很大。它们的各种排放速率足以为一些苛刻的设备提供动力,使其成为镍镉(NiCd)电池等电池的首要选择。典型的聚合物锂电池,无论电池编号,都应该有两个主连接器,即主连接器和平衡连接器。主连接器可以用来